111 research outputs found

    Emergence of a novel GII.17 norovirus – end of the GII.4 era?

    Get PDF
    In the winter of 2014/15 a novel GII.P17-GII.17 norovirus strain (GII.17 Kawasaki 2014) emerged, as a major cause of gastroenteritis outbreaks in China and Japan. Since their emergence these novel GII.P17-GII.17 viruses have replaced the previously dominant GII.4 genotype Sydney 2012 variant in some areas in Asia but were only detected in a limited number of cases on other continents. This perspective provides an overview of the available information on GII.17 viruses in order to gain insight in the viral and host characteristics of this norovirus genotype. We further discuss the emergence of this novel GII.P17-GII.17 norovirus in context of current knowledge on the epidemiology of noroviruses. It remains to be seen if the currently dominant norovirus strain GII.4 Sydney 2012 will be replaced in other parts of the world. Nevertheless, the public health community and surveillance systems need to be prepared in case of a potential increase of norovirus activity in the next seasons caused by this novel GII.P17-GII.17 norovirus

    Integrated Multiscale Modeling of the Nervous System: Predicting Changes in Hippocampal Network Activity by a Positive AMPA Receptor Modulator

    Get PDF
    One of the fundamental characteristics of the brain is its hierarchical organization. Scales in both space and time that must be considered when integrating across hierarchies of the nervous system are sufficiently great as to have impeded the development of routine multilevel modeling methodologies. Complex molecular interactions at the level of receptors and channels regulate activity at the level of neurons; interactions between multiple populations of neurons ultimately give rise to complex neural systems function and behavior. This spatial complexity takes place in the context of a composite temporal integration of multiple, different events unfolding at the millisecond, second, minute, hour, and longer time scales. In this study, we present a multiscale modeling methodology that integrates synaptic models into single neuron, and multineuron, network models. We have applied this approach to the specific problem of how changes at the level of kinetic parameters of a receptor-channel model are translated into changes in the temporal firing pattern of a single neuron, and ultimately, changes in the spatiotemporal activity of a network of neurons. These results demonstrate how this powerful methodology can be applied to understand the effects of a given local process within multiple hierarchical levels of the nervous system

    Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    Get PDF
    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors

    Emergence of a novel GII.17 norovirus – end of the GII.4 era?

    Get PDF
    In the winter of 2014/15 a novel GII.P17-GII.17 norovirus strain (GII.17 Kawasaki 2014) emerged, as a major cause of gastroenteritis outbreaks in China and Japan. Since their emergence these novel GII.P17-GII.17 viruses have replaced the previously dominant GII.4 genotype Sydney 2012 variant in some areas in Asia but were only detected in a limited number of cases on other continents. This perspective provides an overview of the available information on GII.17 viruses in order to gain insight in the viral and host characteristics of this norovirus genotype. We further discuss the emergence of this novel GII.P17-GII.17 norovirus in context of current knowledge on the epidemiology of noroviruses. It remains to be seen if the currently dominant norovirus strain GII.4 Sydney 2012 will be replaced in other parts of the world. Nevertheless, the public health community and surveillance systems need to be prepared in case of a potential increase of norovirus activity in the next seasons caused by this novel GII.P17-GII.17 norovirus.The EU H2020 grant COMPARE under grant agreement number 643476 and the Virgo Consortium, funded by Dutch government project number FES0908 and the Hungarian Scientific Research Fund (OTKA/NKFIH K111615).http://www.eurosurveillance.orgam201

    A Text Mining Pipeline Using Active and Deep Learning Aimed at Curating Information in Computational Neuroscience

    Get PDF
    The curation of neuroscience entities is crucial to ongoing efforts in neuroinformatics and computational neuroscience, such as those being deployed in the context of continuing large-scale brain modelling projects. However, manually sifting through thousands of articles for new information about modelled entities is a painstaking and low-reward task. Text mining can be used to help a curator extract relevant information from this literature in a systematic way. We propose the application of text mining methods for the neuroscience literature. Specifically, two computational neuroscientists annotated a corpus of entities pertinent to neuroscience using active learning techniques to enable swift, targeted annotation. We then trained machine learning models to recognise the entities that have been identified. The entities covered are Neuron Types, Brain Regions, Experimental Values, Units, Ion Currents, Channels, and Conductances and Model organisms. We tested a traditional rule-based approach, a conditional random field and a model using deep learning named entity recognition, finding that the deep learning model was superior. Our final results show that we can detect a range of named entities of interest to the neuroscientist with a macro average precision, recall and F1 score of 0.866, 0.817 and 0.837 respectively. The contributions of this work are as follows: 1) We provide a set of Named Entity Recognition (NER) tools that are capable of detecting neuroscience entities with performance above or similar to prior work. 2) We propose a methodology for training NER tools for neuroscience that requires very little training data to get strong performance. This can be adapted for any sub-domain within neuroscience. 3) We provide a small corpus with annotations for multiple entity types, as well as annotation guidelines to help others reproduce our experiments

    Revisiting Family Leisure Research and Critical Reflections on the Future of Family-Centered Scholarship

    Get PDF
    In this special issue of Leisure Sciences, we examine the progress made and challenges ahead in research on leisure and families—20 years revisited. We consider what advancements have been made in family leisure research and potential new directions that family-centered scholars can look towards. We also consider the dominance of particular theoretical perspectives and methodological designs, and the limitations and consequences of such perspectives, to understand the complexities, diversity, and richness of the lived family experience. Emphasis is placed on the need for scholarship that explores diverse constructions of family and to provide a call to action for family-centered scholars to engage with broader global social issues
    • …
    corecore